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Figure 1. We present a new method to recognize scene-specific scene landmarks to localize a camera, which preserves privacy and
achieves high accuracy. [Left] Scene landmark detections in a query image obtained from a heatmap-based CNN architecture. [Middle] A
visualization of the predicted heatmap scores. [Right] The 3D scene landmarks (in red) and the estimated camera pose (in blue) are shown
over the 3D point cloud (in gray). The 3D point cloud is shown only for the purpose of visualization.

Abstract

Modern camera localization methods that use image re-
trieval, feature matching, and 3D structure-based pose esti-
mation require long-term storage of numerous scene images
or a vast amount of image features. This can make them un-
suitable for resource constrained VR/AR devices and also
raises serious privacy concerns. We present a new learned
camera localization technique that eliminates the need to
store features or a detailed 3D point cloud. Our key idea is
to implicitly encode the appearance of a sparse yet salient
set of 3D scene points into a convolutional neural network
(CNN) that can detect these scene points in query images
whenever they are visible. We refer to these points as scene
landmarks. We also show that a CNN can be trained to
regress bearing vectors for such landmarks even when they
are not within the camera’s field-of-view. We demonstrate
that the predicted landmarks yield accurate pose estimates
and that our method outperforms DSAC*, the state-of-the-
art in learned localization. Furthermore, extending HLoc
(an accurate method) by combining its correspondences
with our predictions boosts its accuracy even further.

1. Introduction

Camera localization is the task of estimating the 3D po-
sition and 3D orientation of a camera from a query image
with respect to a pre-built scene map. This task is a fun-

damental building block to enable VR/AR systems that al-
low users to persistently interact with the surrounding 3D
scene. These scenes are often private spaces; e.g., homes,
where existing localization methods that use retrieval and
feature matching [1,4,16,38,57,62] are not suitable because
stored images or features can be inverted to reveal sensitive
scene content (raising serious privacy concerns [54,72,73]).
Furthermore, existing localization methods usually require
long term storage of many images or a vast amount of fea-
tures and 3D points. In lifelong localization settings, new
images and features will be continuously added, causing
the database to grow over time. The ensuing memory foot-
print may also exceed the limits of on-device localization
for VR/AR systems. Map pruning can help [12, 39, 71], but
it’s efficacy for lifelong localization is unproven.

Learned localization approaches such as absolute pose
regression [29,30,84] and scene coordinate regression [7,8,
10,69] address both aforementioned issues. These methods
implicitly encode scene information in the learned param-
eters of a convolutional neural network (CNN), rather than
explicitly storing images or features. Thus, they preserve
privacy by design. However, their performance is not yet on
par with the top performing methods that use retrieval, fea-
ture matching, and structure-based pose estimation [65,67].

In this paper, we present a new learned method for cam-
era localization that (1) preserves privacy, (2) requires low
storage, and (3) outperforms the state-of-the-art storage-
free pose regression methods. Our idea is inspired by the
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recent success of landmark detection in human pose estima-
tion [46,86] and keypoint recognition for objects [34,51,77]
and faces [18]. Instead of human body joints or object key-
points, we recognize salient, scene-specific 3D points called
scene landmarks from a query image as shown in Figure 1.
This landmark recognition approach is privacy preserving
and requires low data storage as no visual features need to
be retained. The landmark recognition establishes 2D-3D
correspondences that can be used to robustly estimate the
camera pose. We implement the proposed idea by train-
ing a scene-specific CNN architecture that detects the land-
marks, i.e., regresses the 2D coordinates of the landmarks
in the input image. We show that running structure from
motion (SfM) on the mapping images is sufficient to find a
set of salient landmarks and automatically produce the data
needed to train the architecture.

Unlike human pose estimation where most landmarks
are typically visible (up to occlusion), most of the scene
landmarks are not expected to be simultaneously visible,
due to limited camera field-of-view and because landmarks
in different parts of the scene cannot be observed simultane-
ously. We address this challenge by proposing a new Neu-
ral Bearing Estimator (NBE) that can directly regress the
3D bearing vectors for the scene landmarks in the camera
coordinate frame. NBE learns a global scene representa-
tion, similar to PoseNet [30], while learning to predict the
direction vectors of scene landmarks even when they are
invisible. We show that NBE is highly effective and outper-
forms PoseNet by a significant margin. Our full approach
combines scene landmark detection and the NBE method.

Although our method learns to predict 2D-3D corre-
spondences similar to existing scene coordinate regression
(SCR) approaches [10, 69], there are several crucial differ-
ences. First, SCR methods predict dense 3D world coordi-
nates for scene points observed at every pixel. In contrast,
we assume the 3D coordinates for a few salient scene land-
marks are given, and we only infer their 2D positions in the
image. Thus, our matches are extremely sparse (between
10–40) compared to SCR approaches that use thousands.

Our method has comparable performance to HLoc [59,
60] and DSAC* [10] on 7-scenes [69] but outperforms
DSAC* on our new INDOOR-6 dataset that contains chang-
ing scenes, day/night images, and strong illumination varia-
tions. Although we have motivated our method based on the
need to avoid storage, we show that it is also useful when
storage is not a concern. The 2D–3D correspondences re-
covered from our method appear to complement those re-
covered by other methods; e.g., by combining our method
with HLoc, we boost its accuracy even further.

Contributions. This paper presents the following techni-
cal contributions: (1) a new formulation for heatmap-based
landmark localization and bearing angle estimation that is
privacy preserving and can be used to localize a camera in

a pre-built map; (2) a new dataset that can be used to ef-
fectively evaluate camera localization performance in chal-
lenging scenarios; and (3) superior results with low storage
compared to existing storage-free localization methods.

2. Related Work
We briefly review the literature for camera localization, a

topic that has been studied for decades. We shed some new
light on the topic in the context of modern AR/VR applica-
tions while focusing on privacy and pose accuracy.

Classical Approaches. Many classical approaches detect
local image features [4, 38, 43, 57], match them against a
3D point cloud of the scene, and use robust absolute pose
estimation algorithms [14, 21, 37, 56] to obtain the camera
pose. Further, image retrieval-based methods use scalable
techniques [25,27,45,79] to estimate the query camera pose
by interpolating poses of the retrieved database images [11,
53, 79, 80]. Other alternatives include large-scale location
classification and regression [5, 22, 89]. Many classical ap-
proaches have been extended by replacing handcrafted fea-
tures with learned features [1, 16, 19, 24, 44, 59–61, 78, 94].

Retrieval or classification-based approaches only pro-
vide an approximate pose estimate. On the other hand, ap-
proaches that use stored maps (database of images, features,
and 3D points) are usually more accurate. However, they
can compromise user privacy [54]. Furthermore, maintain-
ing up-to-date maps of changing scenes can be challeng-
ing and memory expensive. Unlike map-based methods that
may store several images and hundreds of features per im-
age, our approach needs to store only 200–300 3D points
for the whole scene and does not require any matching.

Absolute and Relative Pose Regression. Learned absolute
pose regression (APR) approaches such as PoseNet [29,30]
regress the camera pose from an input image and do not
maintain a 3D scene map. New variants of APR are scene-
agnostic, are faster during training and inference [68,92], or
use attention for improved accuracy [84]. It has been shown
that APR models are closely related to pose approximation
via image retrieval rather than 3D structure-based pose es-
timation [65], and require uniformly sampled training im-
ages for high accuracy [47]. Therefore, APR methods are
unable to surpass the accuracy of the current state-of-the-art
in camera localization, such as DSAC* [10].

Relative pose regression (RPR) approaches regress the
relative pose of the query image with respect to one or more
database images. While these often generalize better than
APR methods, they require long-term storage of images or
features [3, 32]. While storage can be avoided by using im-
plicit scene anchors and predicting relative pose to anchors,
it typically leads to lower pose accuracy [58].

Unlike APR and RPR methods, our proposed neural
bearing estimator (NBE) predicts landmark bearings as an
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intermediate step towards recovering absolute pose. That
lets us leverage robust, geometric pose solvers. NBE is sim-
pler to train as its training loss is a pure angular quantity
obtained from bearing predictions. No hyperparameters are
needed to balance rotational and translational losses com-
pared to APR methods. NBE clearly outperforms PoseNet
on our new dataset. However, it does not surpass top per-
forming methods such as HLoc [59, 60] and DSAC* [10].

3D Scene Coordinates Regression (SCR). SCR methods
regress dense 3D scene coordinates to establish 2D-3D cor-
respondences that are fed into pose solvers [35, 36, 41, 42,
69,82], allowing them to exploit geometric reasoning. They
have been extended to (1) improve scalability by using en-
sembles [9], (2) make them scene agnostic [93], and (3) al-
low continual updates [85]. DSAC [7] was the first example
of an end-to-end trainable SCR architecture. Subsequently,
DSAC++ [8] was proposed to alleviate the need for RGBD
ground truth. In DSAC* [10], further improvements were
proposed that yield faster training and higher accuracy. In
contrast to SCR approaches that densely predict 3D points
for every pixel in the query image, we store a few salient 3D
points with known coordinates and produce highly sparse
2D detections (or regress 3D bearings) of those 3D points
in the query image. SCR approaches generate several thou-
sands of redundant 2D–3D correspondences, whereas our
predictions are highly sparse but also accurate.

Keypoint and Landmark Detection. Beyond the cam-
era localization literature, there is a long tradition of for-
mulating keypoint or landmark recognition as a classifica-
tion problem. These were initially proposed to find the 6-
DoF pose of small objects using random forests [34], ran-
dom ferns [49], and nowadays, CNNs [48, 51, 52, 55]. Such
techniques also work for deformable object categories (hu-
mans [46, 81, 86], faces [18, 91, 96], and hands [70]) to find
semantic keypoints such as joint positions. Modern key-
point detectors [13, 74, 90] leverage appearance and spatial
contextual cues, and CNNs (by virtue of their large recep-
tive field) can effectively reason jointly about them [46,86].
Surprisingly, we are not aware of such approaches being
used for 6-DoF camera localization. While some methods
were studied for improved place recognition using scene
keypoints [5] or leveraging 2D scene object detection for
camera pose estimation [87], they do not address the cam-
era localization task in its full generality.

Datasets. There are many camera localization datasets [2,
15, 20, 26, 33, 40, 63, 64, 67, 75, 88]. However, they typi-
cally capture sparse imagery and are focused on large-scale,
outdoor scenes, the self-driving setting, or provide limited
training data. Indoor datasets, such as 7-Scenes [69] and
12-scenes [82], are popular for learned methods and rele-
vant for us. However, these datasets are for small-scale, sta-
tionary scenes captured under fixed illumination. Changing

(a) (b)

Figure 2. We present two methods for scene landmark predic-
tion. (a) Our Scene Landmark Detection (SLD) formulation in-
volves training a network to detect 2D landmarks in the image
from which bearing vectors can be easily computed. (b) In our
second formulation, Neural Bearing Estimation (NBE), a network
directly regresses 3D bearings in camera coordinates (blue vectors
are inside the camera’s FoV whereas red vectors are outside).

environments are still a major hurdle for localization meth-
ods, as shown on the RIO10 dataset [83]. Unfortunately,
for RIO10, limited training data was publicly released (only
two sequences per scene), making it difficult to develop
learned methods. Therefore, to evaluate our method and
compare it to existing baselines, we collect our own multi-
session, INDOOR-6 dataset in non-stationary environments
where images captured at different times of day and night
also exhibit strong illumination variations.

3. Proposed Methodology

In this section, we present two formulations for predict-
ing scene landmarks from which we recover the camera
pose. In our first approach, we train a model to identify
2D scene landmarks in the image, which we call our Scene
Landmark Detector (SLD). Since we assume known cam-
era intrinsics, these 2D detections can be converted into 3D
bearing vectors or rays. In the second approach, we train
a different model to directly predict the 3D bearing vectors
in camera coordinates for the landmarks, which we call our
Neural Bearing Estimator (NBE). These two proposed ideas
are outlined in Figure 2. With SLD, only landmarks visible
in the camera’s field of view (FoV) can be detected, whereas
NBE predicts bearings for all the landmarks, including in-
visible ones outside the camera’s field of view.

Notation and Preliminaries. To train SLD and NBE, we
use a 3D point cloud P reconstructed by structure from mo-
tion (SfM) using a set of RGB images, I = {Ii}Ni=1, cap-
tured by a pinhole camera, where N is the number of im-
ages. Each image I is associated with an operation of cam-
era projection πK,R,t(x) that maps the 3D point x to the im-
age coordinate where R ∈ SO(3), t ∈ R3, and K ∈ R3×3

are the rotation, translation, and intrinsic parameters of the
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Figure 3. Fully convolutional architecture for the Scene Landmark Detector (SLD) that outputs a stack of heatmaps, one per landmark.

image, respectively. A subset of the 3D point cloud, S, is
selected to form scene landmarks to learn SLD and NBE,
sℓ ∈ S ⊂ P , where sℓ ∈ R3 is the ℓ-th landmark. We
use the visibility computed by SfM for each image I and
denote it as Svis(I). A landmark sℓ is projected onto the
camera to form the image projection uℓ = πK,R,t(sℓ). For
a 2D image point u, we denote the associated unitized bear-
ing vector in the camera coordinate as b = K−1u

∥K−1u∥2
∈ S2.

3.1. Scene Landmark Detector (SLD)

We implement the scene landmark detector (SLD) using
a CNN-based architecture. Inspired by prior work [18, 46],
SLD is designed to take an RGB image I as input and out-
put a set of pixel likelihood maps (heatmaps) {Hℓ(I,Φ) ∈
[0, 1]W

′×H′}Ll=1 that indicate the location of each visible
landmark ℓ = 1, . . . , L respectively, where W ′ and H ′ are
the width and height of the heatmaps. Φ denotes the learn-
able CNN parameters, which are specific to each scene.

The neural network architecture consists of four main
components. First, a ResNet-18 [23] backbone is used with
the last three max-pool layers removed to retain high res-
olution feature maps (the output resolution is a quarter of
the input image resolution). Second, a dilated convolution
block [95] is used after the ResNet-18 backbone with di-
lation rates set to 1, 2, 3, and 4. Next, a transposed con-
volution layer performs upsampling and is responsible for
generating heatmaps that are half the resolution of the input
image. The final layer consists of 1×1 convolutions which
predict L heatmap channels, one for each landmark sℓ ∈ S.
The architecture is illustrated in Figure 3.

To train the architecture, we use the ground truth
heatmap Ĥℓ(I) and employ the mean squared loss:

LSLD(Φ) =
∑
I

L∑
ℓ=1

||Hℓ(I,Φ)− Ĥℓ(I)||2F (1)

where ||.||F denotes the Frobenius norm, Ĥℓ is obtained
by convolving a Dirac delta function at the projected land-

Figure 4. Our NBE architecture directly regresses 3D bearing vec-
tors for all the landmarks. A ResNet-18 backbone feeds into L
multi-layered perceptron (MLP) heads that predict the bearings.

mark location uℓ with a 2D Gaussian filter with a stan-
dard deviation of σ, and uℓ is the 2D position where land-
mark sℓ ∈ Svis(I) is observed in image I . If the land-
mark ℓ is not observed in the image I , we set Ĥℓ(I) as a
0 matrix with proper dimension. We assign σ = 5 (pixels)
and generate two sets of ground truth heatmaps at quarter
(W ′ = W

4 , H ′ = H
4 ) and half (W ′ = W

2 , H ′ = H
2 ) resolu-

tions where W ×H is the input image dimension.
During inference, we assume a landmark has been de-

tected when the maximum heatmap value in its channel
exceeds a threshold τ = 0.2. To get the 2D location ûℓ

with subpixel accuracy, we compute the expectation over
the cropped 17×17 patch at the heatmap peak location:

ûℓ = EHℓ(I,Φ)[u]. (2)

3.2. Neural Bearing Estimator (NBE)

We design a simple model to regress bearing vectors for
the full set of scene landmarks (even if it is invisible) given
an image I . Specifically, our CNN (ResNet-18 [23] back-
bone) takes as input an image I to produce a deep feature
map. It is then followed by multiple MLP (multi-layer per-
ceptron) blocks. Each block outputs a bearing vector to-
wards a landmark. Our MLP blocks contain two fully con-
nected layers with 128 ReLU activation nodes.

We denote the network parameters as Θ and each land-
mark bearing vector prediction as Bℓ(I,Θ) ∈ R3. We train
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our neural network using the ground truth bearing bℓ(I) in
camera coordinates with the robust angular loss Lang [17]:

LNBE(Θ) =
∑
I

L∑
ℓ=1

Lang

( Bℓ(I,Θ)

||Bℓ(I,Θ)||2
,bℓ(I)

)
. (3)

3.3. Camera Pose Estimation

We first feed each query image into the SLD network to
obtain 2D detections, which we convert to a set of land-
mark bearings, B1. If more than eight scene landmarks
are detected, we compute the camera pose using a robust
minimal solver (P3P [28] + RANSAC [21]) followed by a
Levenberg-Marquardt based nonlinear refinement. Other-
wise, we feed the same image into the NBE network and ob-
tain predicted bearings B2 after which we merge the sets of
bearing estimates B1 and B2 to form a new set B3. When a
bearing in both sets B1 and B2 refer to the same landmark,
we keep the estimate from B1 since SLD is usually more
accurate than NBE. Finally, we compute camera pose using
the same procedure described above but with B3.

Unlike DSAC* [10] which estimates 3D scene coordi-
nates from an input image I , our SLD approach focuses
on recognizing salient parts of the scene. Compared to
APR [29, 30] approaches that directly predict camera pose
by memorization, NBE predicts 3D direction vectors that
are directly associated with pixels; i.e., bearings are im-
plicitly associated with pixel locations. We conjecture that
this geometric association in NBE and the ability to uti-
lize geometric constraints imposed by absolute pose solvers
improve the overall generalization over pure APR meth-
ods. This is confirmed by empirical evidence presented later
(Section 4.1). Finally, combining NBE predictions and SLD
detections improves overall recall, especially when a small
number of landmarks are visible in the image.

3.4. Scene Landmark Selection

Finding the optimal subset of the L scene landmarks
from the SfM point cloud P is a combinatorial problem
where evaluating every subset is intractable. Instead, in-
spired by prior work [5] that also proposed finding discrim-
inative keypoints or scene elements in a greedy fashion, we
select the scene landmarks that are (a) robust (longer track),
(b) repeatable (seen in multiple episodes1), and (c) gener-
alizable (observed from many different viewing directions
and depths). We measure a saliency score A(x) for a 3D
point x with a track longer than a threshold t, as follows:

A(x) = λ log2 (l) +
e

E
+min(a, 2) + min(d, 1) (4)

where l is the observation track length, e is the number of
unique episodes (videos) the point was observed in, and E

1We refer to each unique video in the training set as an episode.

Figure 5. Each row shows image patches from training images
for four selected landmarks (green dots). Notice the appearance
variation caused by changes in viewpoint, scale, lighting, and blur.

is the number of episodes in the training set. a denotes the
largest angle in radians formed by any two rays among all
visible views where a ray is the line between the 3D point
and the position of a camera. d = σd/µd indicates a nor-
malized depth variation where µd and σd are the mean and
the standard deviation of the depths for track observations
respectively. We set t = 25 and λ = 0.25. We compute the set
of saliency scores for all points x ∈ P as A = {A(x)}x∈P .

In addition to maximizing the overall saliency score,
we seek scene landmarks that spatially cover the 3D
scene such that some landmarks are visible from any-
where within the scene; i.e., no matter where the camera
is in the scene, we want some landmarks to be visible.
To that end, we use the constrained greedy approach de-
scribed in Algorithm 1 which iteratively invokes the routine
SelectBestPoint(P,A,S, r):

argmax
x∈Ω

A(x), Ω = {x| x ∈ P, ∥x− s∥ > r ∀s ∈ S},

which finds the point with the highest saliency score whose
distance to any scene landmarks is greater than r. This point
selection approach achieves high saliency scores while en-
suring full scene coverage. Figure 5 shows cropped images
for a few selected landmarks, and the 3D landmark posi-
tions for one scene is shown in Figure 1.

Algorithm 1: Landmark Selection
Input : P , A, L, r0
Output: S
S ← {} and r← r0; // Initialize with large coverage radius
do

x← SelectBestPoint(P,A,S, r);
if x ̸= ∅ then
S ← S ∪ x;

else
r ← r

2
; // Halve coverage radius to find more points

end
while |S| < L;
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Figure 6. INDOOR-6 Dataset. Top-view SfM reconstructions of the multi-room indoor scenes in our INDOOR-6 dataset with the point
cloud (in gray) and camera locations (in red). The number of (episodes – training images – test images) is shown.

3.5. Implementation Details

Training SLD. The high variation in saliency and visibil-
ity of the selected landmarks can lead to unbalanced train-
ing data causing the network to focus on landmarks with
more training samples. To address that, we adopt a batch-
balanced training strategy which is designed to treat all
landmarks in the training data equally. At each iteration, we
construct a mini-batch by randomly selecting 128 cropped
image patches of size 96 × 96. The mini-batch contains
64 cropped patches where each patch contains at least one
visible landmark in S and 64 random crops from a random
set of training images. For data augmentation, we apply
transformations to each training patch: (1) random cropping
and scaling (0.75–1.25×); (2) homography warping gener-
ated with 0-20 degree roll, pitch, and yaw camera rotations;
and (3) intensity gain change up to ±10%. Finally, as the
point visibilities estimated from COLMAP can suffer from
false negatives, we build an extended visibility set Svis(I)
for each image I by adding landmarks that are visible in
nearby images (with poses up to 10cm/10◦ from that of I).

Training NBE. For each image I , we split the set of land-
marks S into the visible set Svis(I) and the invisible set
S \ Svis(I). We then weigh the angular loss for bearings in
Svis ten times higher than bearings in the invisible set.

We implement both SLD and NBE architectures in Py-
Torch [50] and trained them with batch sizes of 128 patches
and 32 images respectively on a single NVIDIA Tesla V100
GPU using the Adam [31] optimizer. We train SLD for 200
epochs. The learning rate is initially set to 10−3 and halved
every 20 epochs. For NBE, we use 100 epochs with an ini-
tial learning rate of 10−3 and halve it every 10 epochs. The
code and data can be found at https://github.com/
microsoft/SceneLandmarkLocalization.

4. Experimental Results

Datasets. We use the public 7-SCENES [69] dataset and
our new INDOOR-6 dataset for evaluation. The 7-SCENES
dataset contains multiple Kinect RGBD videos captured in
seven indoor scenes. The videos are split into train/test
splits for chess (4/2), fire (2/2), heads (1/1), office (6/4),
pumpkin (4/2), redkitchen (7/5), and stairs (4/2), where

(train/test) denotes the number of videos for train and test
respectively, and each video consists of 500-1000 images
at 640×480 resolution. As shown in Table 4, the state-of-
the-art methods achieve nearly 100% recall on 7-SCENES
because of small scale scene sizes and fixed illumination.

Our INDOOR-6 dataset was created from multiple RGB
30 fps videos captured in six indoor scenes over multiple
days. We extracted frames at 3 fps and split them into train-
ing and test sets.2 The pseudo ground truth (pGT) 3D point
clouds and camera poses for each scene are computed using
COLMAP [66]. Figure 6 shows the camera poses (in red)
and point clouds (in gray) and for each scene, the number of
video and images in the training and test split respectively.
Compared to 7-SCENES, the scenes in INDOOR-6 are larger,
have multiple rooms, and contain illumination variations as
the images span multiple days and different times of day.

Evaluation Metrics. We evaluate the estimated pose using
the standard metrics [69] as rotational and positional errors:

∆R = arccos Tr(R⊤R̂)−1
2 , ∆T = ∥R⊤t− R̂⊤t̂∥2.

where (R, t) and (R̂, t̂) are the estimated and ground truth
camera poses respectively. We report the median of ∆R
and ∆T per scene and the percentage of test images where
∆R ≤ 5◦ and ∆T ≤ 5cm respectively.

Quantitative Comparison. We have evaluated five variants
of our method – NBE, SLD, NBE+SLD, NBE+SLD(E),
and HLoc+SLD. While NBE+SLD and HLoc+SLD use
ResNet-18 backbones, the variant NBE+SLD(E) uses a
4× more compact EfficientNet-Lite0 [76] backbone. In
HLoc+SLD, we combine the 2D–3D correspondences re-
covered by HLoc with the 2D–3D landmark correspon-
dences from SLD and then use them all to estimate pose.

We also evaluated four baselines. (1) PoseNet. We reim-
plemented PoseNet [30] using the ResNet-18 backbone to
ensure a fair comparison to NBE. Both architectures use
the same backbone and are almost identical except that
PoseNet uses a different MLP layer to regress the full cam-
era pose. (2) DSAC* [10]. We used the DSAC*+3D model
(SfM) configuration and trained a model for each scene.

2Frames from each video are only added to one of the two splits.

6

https://github.com/microsoft/SceneLandmarkLocalization
https://github.com/microsoft/SceneLandmarkLocalization


Method
INDOOR-6

scene1 scene2 scene3 scene4 scene5 scene6
(cm.)↓ (deg.)↓ (%)↑ (cm.)↓ (deg.)↓ (%)↑ (cm.)↓ (deg.)↓ (%)↑ (cm.)↓ (deg.)↓ (%)↑ (cm.)↓ (deg.)↓ (%)↑ (cm.)↓ (deg.)↓ (%)↑

PoseNet 159.0 7.46 0.0 193.0 8.42 0.0 141.0 9.26 0.0 109.4 7.84 0.0 179.3 9.37 0.0 118.2 9.26 0.0
NBE 22.3 4.03 2.0 29.9 4.88 2.1 24.7 4.85 2.9 39.9 5.35 1.5 37.8 5.28 0.0 30.8 6.60 0.3
DSAC* 12.3 2.06 18.7 17.5 3.4 12.3 13.1 2.34 19.7 5.5 0.84 44.9 40.7 6.72 10.6 6.0 1.40 44.3
NBE+SLD(E) 7.5 1.15 28.4 11.8 2.30 26.1 6.2 1.28 43.5 5.1 0.75 48.9 6.3 0.96 37.5 5.8 1.30 44.6
NBE+SLD 6.5 0.9 38.4 7.4 1.6 37.0 4.4 0.91 53.0 4.0 0.63 62.5 6.0 0.91 40.0 5.0 0.99 50.5
HLoc-L300 - - 12.9 - - 7.0 - - 27.3 - - 44.5 - - 9.7 - - 28.4
HLoc-L1000 8.7 1.20 33.3 - - 25.4 5.5 1.02 48.3 4.3 0.64 56.6 - - 21.9 5.6 1.10 47.4
HLoc-L3000 5.3 0.73 48.1 - - 31.3 3.4 0.65 61.9 3.6 0.54 69.5 - - 31.1 3.7 0.71 59.1
HLoc 3.2 0.47 64.8 3.9 0.76 60.6 2.1 0.37 81.0 3.3 0.47 70.6 6.1 0.86 42.7 2.1 0.42 79.9
HLoc+SLD 2.9 0.43 68.7 3.4 0.63 62.7 1.9 0.32 81.0 2.8 0.45 73.9 5.4 0.78 45.3 2.1 0.42 82.0

Table 1. INDOOR-6 quantitative evaluation. We report the median position error (cm), median rotation error (◦), and recall at (5cm, 5◦).
Low recall methods have invalid medians (marked “-”). The top five rows are for storage-free methods, the best amongst them is marked
green. The bottom five are for methods with high storage. The best overall method is marked blue. HLoc+SLD performs the best overall.

Method Storage (GB)

DSAC* 0.027
NBE+SLD(E) 0.029
NBE+SLD 0.132
HLoc-L300 0.14–0.19
HLoc-L1000 0.17–0.21
HLoc-L3000 0.21–0.48
HLoc 0.73–2.36

Method INDOOR-6 (recall (5cm, 5◦))
scene1 scene2 scene3 scene4 scene5 scene6

Patches Res. Aug. L # of visible points ≥ 8 ↑ Average ↑
DSAC* - - - - - - - - - - 25.1
SLD × 1/4 × 200 24.9 20.4 42.2 77.6 40.1 39.6 18.2
SLD ✓ 1/4 × 200 77.2 38.0 53.0 94.1 72.2 66.3 28.2
SLD ✓ 1/2 × 200 61.1 38.4 44.4 91.5 58.3 59.4 36.9
SLD ✓ 1/2 ✓ 200 66.0 34.9 52.4 90.4 62.7 57.6 38.4
SLD ✓ 1/2 ✓ 300 74.6 48.0 68.6 94.9 88.9 66.3 42.7
SLD ✓ 1/2 ✓ 400 73.8 45.1 80.3 96.3 93.2 74.3 42.4

Table 2. [Left] Storage. Storage used by various methods on the INDOOR-6 scenes. The range shows that HLoc variants use notable
storage for larger scenes. [Right] SLD training ablation. We show the effect of training SLD with patches (“Patches”), various output
heatmap resolutions (“Res.”), data augmentation (“Aug.”), and various landmark counts (L). Best results are in blue.

The training had two phases – (i) scene coordinate ini-
tialization (1M iterations) and (ii) end-to-end training with
differentiable RANSAC and pose estimation (100K itera-
tions). (3) HLoc [59, 60]. In HLoc’s offline phase, we
used our pseudo ground truth poses to triangulate 3D points
from SuperPoint features and stored VLAD [25] features.
In the online phase, we first retrieved the top-10 images
similar to the query using VLAD-based nearest neighbor
search and then ran feature matching between the query
and retrieved images to find 2D–3D correspondences. Fi-
nally, we computed camera pose using our pose estimation
pipeline. (4) HLoc-LX . In this HLoc variant, we only store
X scene landmarks and their descriptors. The landmarks
were selected using our method (Section 3.4), We evalu-
ated three settings; X={300, 1000, 3000}. These baselines
help us study the effect of reduced storage on HLoc’s per-
formance.

4.1. Results on INDOOR-6

Table 1 shows results on the INDOOR-6 dataset. The top
half is for storage-free methods. The lower half is for meth-
ods that use high storage. Overall, our method, NBE+SLD,
performs the best (highlighted in green) amongst storage-
free methods for almost all metrics on all scenes. Our
NBE+SLD and its efficient version NBE+SLD(E), outper-
forms the state-of-the-art DSAC* by a wide margin on all
scenes. However, this could be partially because our dataset

Visibility-weighted loss × × ✓ ✓
Landmarks 50 (select) 50 (random) 50 (select) 100 (select)
Average Recall (10cm, 10◦) ↑ 7.11 7.32 7.67 8.36

Table 3. NBE training ablation. Effect of visibility-weighted loss
and three different landmark selection methods on recall accuracy.

has SfM pseudo ground truth (pGT), whereas DSAC* is
known to perform better on datasets with RGBD SLAM
pGT [6] (see Section 4.2). It is worth noting that NBE
is consistently more accurate than PoseNet even though
both use identical CNN backbones. However, NBE+SLD
is always more accurate than NBE, which confirms that
heatmap representations is crucial for higher accuracy.

While NBE+SLD outperforms other storage-free meth-
ods, it is not yet competitive with HLoc, a method with
high storage usage. However, NBE+SLD does outperform
the compact HLoc variants, HLoc-L300 and HLoc-L1000

designed for reduced storage. Among methods that re-
quire high storage (bottom half of Table 1), HLoc+SLD, the
method that computes pose from both HLoc’s matches and
SLD’s predictions, has the best overall results, showing the
complementary nature of scene landmark predictions. Fig-
ure 7 shows qualitative results on the INDOOR-6 dataset.

Storage. Table 2 reports storage used by the baselines
and our method. NBE+SLD(E) with its EfficientNet-
Lite0 backbone and DSAC* use similar storage,
but NBE+SLD(E) outperforms DSAC* significantly.
NBE+SLD uses 0.132 GB of storage, which is 4× higher
than that of NBE+SLD(E) but is also consistently more
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Method 7-SCENES
chess fire heads office pumpkin redkitchen stairs recall

(cm.)↓ (deg.)↓ (%)↑ (cm.)↓ (deg.)↓ (%) ↑ (cm.)↓ (deg.)↓ (%) ↑ (cm.)↓ (deg.)↓ (%) ↑ (cm.)↓ (deg.)↓ (%) ↑ (cm.)↓ (deg.)↓ (%)↑ (cm.)↓ (deg.)↓ (%)↑ (%)↑
MS-Transformer+ 11 4.66 – 24 9.6 – 14 12.19 – 17 5.66 – 18 4.44 – 17 5.94 – 26 8.45 – –
HLoc+ 2.4 0.77 94.2 1.8 0.75 93.7 0.9 0.59 99.7 2.6 0.77 83.2 4.4 1.15 55.1 4.0 1.38 61.9 5.1 1.46 49.4 76.7
DSAC*+ 1.8 0.59 97.8 1.7 0.77 94.5 1.0 0.66 98.8 2.7 0.79 83.9 3.9 1.05 62.0 3.9 1.24 65.5 3.5 0.93 78.0 82.9
NBE+SLD+ 2.2 0.75 93.7 1.8 0.73 94.1 0.9 0.68 96.6 3.2 0.91 74.8 5.6 1.55 44.6 5.3 1.52 45.7 5.5 1.41 44.6 70.6
HLoc 0.8 0.11 100 0.9 0.24 99.4 0.6 0.25 100 1.2 0.20 100 1.4 0.15 100 1.1 0.14 98.6 2.9 0.80 72.0 95.7
DSAC* 0.5 0.17 99.9 0.8 0.28 98.9 0.5 0.34 99.8 1.2 0.34 98.1 1.2 0.28 99.0 0.7 0.21 97.0 2.7 0.78 92 97.8
NBE+SLD 0.6 0.18 100 0.7 0.26 99.6 0.6 0.35 98.4 1.3 0.33 95.8 1.5 0.33 94.4 0.8 0.19 96.6 2.6 0.72 85.2 95.7

Table 4. 7-SCENES evaluation. Median position error (cm), median rotation error (◦), and recall at (5cm, 5◦) metrics for methods evaluated
using the original RGBD pGT indicated with the suffix (+) (see top four rows). The same metrics for methods evaluated using SfM pGT
(see bottom three rows). HLoc and DSAC* results are from [6]. DSAC* is more accurate than both HLoc and NBLE+SLD, which have
similar performance. The (+) variants for DSAC*, HLoc and NBE+SLD show a similar trend. Best result per column shown in blue.

Figure 7. Qualitative Results on INDOOR-6. Detected land-
marks (green) and pose errors ∆R (in deg.) and ∆T (in cm.)
shown on test images from the six scenes. The images for scene1,
scene5, and scene6 were taken in dark rooms in low light.

accurate. In contrast, HLoc, which has the highest overall
accuracy, has a significantly higher storage requirement (up
to 2.36 GB for the largest scene in the INDOOR-6 dataset).
HLoc-L300 and HLoc-L1000 use less storage in comparison,
but also have lower accuracy.

Ablation study for SLD. In Table 2 [Right], we report how
various factors affect SLD training; namely, (1) training
with patches (Patches) vs. whole image, (2) output resolu-
tions (Res.), (3) data augmentation (Aug.), and (4) the num-
ber of scene landmarks (L). We also compare the perfor-
mance to DSAC*. The main takeaway is that all three com-
ponents of the training pipeline (training with patches, data
augmentation, and high resolution) are crucial for SLD, and
we achieve the highest recall when using 300 landmarks.
All SLD results were obtained using these parameters.

Ablation study for NBE. The study reported in Table 3
shows that (1) the choice or count of landmarks does not
matter much (i.e., randomly choosing landmarks from the
3D point cloud also works well); and (2) using known vis-
ibility slightly improves performance. Thus, we used 50
landmarks for NBE and trained it with visibility masks.

4.2. Results on 7-SCENES

Table 4 compares MS-Transformer [68], HLoc [59, 60],
DSAC* [10], and our method on the 7-SCENES dataset.
The top four rows show methods (marked +) using RGBD
SLAM-based pGT for training and evaluation. The meth-
ods in the bottom three rows show results for methods us-
ing SfM pGT. The bottom row shows that performance of
NBE+SLD is quite competitive. It is on par with HLoc
while slightly less accurate than DSAC* (average recall
95.7% vs. 97.8%). In contrast, NBE+SLD+ (70.6%) is less
accurate than HLoc+ (76.7%) and DSAC*+ (82.9%). This
indicates that SfM pGT, which is already known to produce
a more reliable 3D point cloud than RGBD SLAM on 7-
SCENES [6], is more suitable than RGBD pGT for training
and evaluating our method on 7-SCENES.

5. Conclusion and Discussion

In this paper, we revisited the task of learned camera lo-
calization while aiming for a method which has low stor-
age requirements but has high accuracy. Our main insight
is that modern CNN architectures widely used for keypoint
detection in human and object pose estimation are also suit-
able for detecting salient, scene-specific 3D landmarks and
a small number of such landmarks may suffice. Our eval-
uation on a new dataset demonstrates that our method out-
performs previous storage-free methods but is not as accu-
rate as HLoc, one of the top retrieval-and-matching meth-
ods, although HLoc does require high storage. However,
our landmark-based 2D–3D correspondences complement
those of HLoc and combining the correspondences before
computing pose boosts the accuracy of HLoc further.

Our method has some limitations. First, our CNNs
are scene-specific and like other learned methods [10, 30]
need many training images per scene. Thus, networks with
shared, scene-agnostic backbones that can be fine-tuned to
different scenes, should be explored. Second, to handle
larger scenes effectively, it is worth leveraging scene par-
titioning strategies similar to ESAC [9]. Finally, jointly
selecting landmarks and training the network to maximize
overall pose accuracy could address the potential weakness
of using a fixed set of landmarks selected prior to training.

8



References
[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. In CVPR, 2016. 1, 2

[2] Hernan Badino, Daniel Huber, and Takeo Kanade. The CMU
Visual Localization Data Set. http://3dvis.ri.cmu.
edu/data-sets/localization, 2011. 3

[3] Vassileios Balntas, Shuda Li, and Victor Prisacariu. Reloc-
net: Continuous metric learning relocalisation using neural
nets. In ECCV, 2018. 2

[4] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc
Van Gool. Speeded-up robust features (surf). CVIU, 2008.
1, 2

[5] Alessandro Bergamo, Sudipta N Sinha, and Lorenzo Torre-
sani. Leveraging structure from motion to learn discrim-
inative codebooks for scalable landmark classification. In
CVPR, 2013. 2, 3, 5

[6] Eric Brachmann, Martin Humenberger, Carsten Rother, and
Torsten Sattler. On the limits of pseudo ground truth in visual
camera re-localisation. In ICCV, 2021. 7, 8

[7] Eric Brachmann, Alexander Krull, Sebastian Nowozin,
Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten
Rother. Dsac-differentiable ransac for camera localization.
In CVPR, 2017. 1, 3

[8] Eric Brachmann and Carsten Rother. Learning less is more -
6D camera localization via 3D surface regression. In CVPR,
2018. 1, 3

[9] Eric Brachmann and Carsten Rother. Expert sample consen-
sus applied to camera re-localization. In ICCV, 2019. 3, 8

[10] Eric Brachmann and Carsten Rother. Visual camera re-
localization from rgb and rgb-d images using dsac. T-PAMI,
2021. 1, 2, 3, 5, 6, 8

[11] Bingyi Cao, Andre Araujo, and Jack Sim. Unifying deep
local and global features for image search. In ECCV, 2020.
2

[12] Song Cao and Noah Snavely. Minimal scene descriptions
from structure from motion models. In CVPR, 2014. 1

[13] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi,
Thomas S. Huang, and Lei Zhang. Higherhrnet: Scale-aware
representation learning for bottom-up human pose estima-
tion. In CVPR, 2020. 3

[14] Ondrej Chum and Jiri Matas. Matching with prosac - pro-
gressive sample consensus. In CVPR, 2005. 2

[15] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 3

[16] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPR workshops, 2018. 1, 2

[17] Tien Do, Khiem Vuong, Stergios I. Roumeliotis, and
Hyun Soo Park. Surface normal estimation of tilted images
via spatial rectifier. In ECCV, 2020. 5

[18] Xuanyi Dong, Yi Yang, Shih-En Wei, Xinshuo Weng, Yaser
Sheikh, and Shoou-I Yu. Supervision by registration and tri-
angulation for landmark detection. T-PAMI, 2020. 2, 3, 4

[19] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-Net:
A Trainable CNN for Joint Detection and Description of Lo-
cal Features. In CVPR, 2019. 2

[20] ETH Zurich Computer Vision Group and Microsoft Mixed
Reality & AI Lab Zurich. The ETH-Microsoft Localiza-
tion Dataset. https://github.com/cvg/visloc-
iccv2021, 2021. 3

[21] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 1981. 2, 5

[22] James Hays and Alexei A. Efros. Im2gps: estimating geo-
graphic information from a single image. In CVPR, 2008.
2

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4

[24] Janghun Hyeon, Joohyung Kim, and Nakju Doh. Pose cor-
rection for highly accurate visual localization in large-scale
indoor spaces. In ICCV, 2021. 2
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Hugo Germain, Carl Toft, Victor Larsson, Marc Pollefeys,
Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, and
Torsten Sattler. Back to the Feature: Learning Robust Cam-
era Localization from Pixels to Pose. In CVPR, 2021. 2

[62] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Improving
image-based localization by active correspondence search.
In ECCV, 2012. 1

[63] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,
Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi
Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmarking
6dof outdoor visual localization in changing conditions. In
CVPR, 2018. 3

[64] Torsten Sattler, Tobias Weyand, B. Leibe, and Leif P.
Kobbelt. Image retrieval for image-based localization revis-
ited. In BMVC, 2012. 3

[65] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura
Leal-Taixe. Understanding the limitations of cnn-based ab-
solute camera pose regression. In CVPR, 2019. 1, 2

[66] Johannes Schönberger and Jan-Michael Frahm. Structure-
from-Motion Revisited. In CVPR, 2016. 6

[67] Johannes Schönberger, Hans Hardmeier, Torsten Sattler, and
Marc Pollefeys. Comparative Evaluation of Hand-Crafted
and Learned Local Features. In CVPR, 2017. 1, 3

[68] Yoli Shavit, Ron Ferens, and Yosi Keller. Learning multi-
scene absolute pose regression with transformers. In ICCV,
2021. 2, 8

[69] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-
ordinate regression forests for camera relocalization in rgb-d
images. In CVPR, 2013. 1, 2, 3, 6

10



[70] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using mul-
tiview bootstrapping. In CVPR, 2017. 3

[71] Hyun Soo Park, Yu Wang, Eriko Nurvitadhi, James C Hoe,
Yaser Sheikh, and Mei Chen. 3d point cloud reduction using
mixed-integer quadratic programming. In CVPR Workshops,
2013. 1

[72] Pablo Speciale, Johannes Schonberger, Sing Bing Kang,
Sudipta N Sinha, and Marc Pollefeys. Privacy preserving
image-based localization. In CVPR, 2019. 1

[73] Pablo Speciale, Johannes Schonberger, Sudipta N Sinha, and
Marc Pollefeys. Privacy preserving image queries for camera
localization. In ICCV, 2019. 1

[74] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose esti-
mation. In CVPR, 2019. 3

[75] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea
Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-
ihiko Torii. Inloc: Indoor visual localization with dense
matching and view synthesis. In CVPR, 2018. 3

[76] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv,
2019. 6

[77] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time
seamless single shot 6d object pose prediction. In CVPR,
2018. 2

[78] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen,
and Vassileios Balntas. Sosnet: Second order similarity reg-
ularization for local descriptor learning. In CVPR, 2019. 2

[79] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggre-
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