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Figure 1. We study the problem of predicting geometry (depths and surface normals) from a single view egocentric image that includes
dynamic objects (e.g., hand and people). We design a multimodal spatial rectifier that can effectively handle the excessively tilted im-
ages caused by head movement (e.g., nearly 90 degree pitch angle when engaging eye-hand coordination). Our method shows strong
performance on unseen images from EPIC-KITCHENS [7] (left), FPHA [18] (top right), and our EDINA (bottom right) datasets.

Abstract

In this paper, we study a problem of egocentric scene
understanding, i.e., predicting depths and surface normals
from an egocentric image. Egocentric scene understand-
ing poses unprecedented challenges: (1) due to large head
movements, the images are taken from non-canonical view-
points (i.e., tilted images) where existing models of geom-
etry prediction do not apply; (2) dynamic foreground ob-
jects including hands constitute a large proportion of vi-
sual scenes. These challenges limit the performance of the
existing models learned from large indoor datasets, such
as ScanNet [6] and NYUv2 [37], which comprise predom-
inantly upright images of static scenes. We present a mul-
timodal spatial rectifier that stabilizes the egocentric im-
ages to a set of reference directions, which allows learning
a coherent visual representation. Unlike unimodal spatial
rectifier that often produces excessive perspective warp for
egocentric images, the multimodal spatial rectifier learns
from multiple directions that can minimize the impact of the
perspective warp. To learn visual representations of the dy-
namic foreground objects, we present a new dataset called
EDINA (Egocentric Depth on everyday INdoor Activities)
that comprises more than 500K synchronized RGBD frames
and gravity directions. Equipped with the multimodal spa-
tial rectifier and the EDINA dataset, our proposed method

on single-view depth and surface normal estimation sig-
nificantly outperforms the baselines not only on our ED-
INA dataset, but also on other popular egocentric datasets,
such as First Person Hand Action (FPHA) [18] and EPIC-
KITCHENS [7].

1. Introduction
We interact with surrounding objects in structured yet

rather complex, unorganized, and dynamic environments,
enabled by our robust egocentric perception that facilitates
understanding 3D scene geometry around us. Such innate
perceptual ability shows in stark contrast with that of ex-
isting computer vision systems, trained to operate on im-
ages depicting static and well-organized scenes recorded
by carefully controlled cameras [6, 19, 37]. These trained
models [14, 23] are, despite their remarkable performance,
shown to be highly brittle when predicting the scene ge-
ometry of egocentric images that observe unscripted every-
day activities, including diverse hand-object interactions,
captured by in situ embodied sensors such as head/body-
mounted cameras [8]. This requires additional sensors such
as IMU and depth sensors in augmented/mixed reality de-
vices (e.g., Hololens and Magic Leap One) to deliver inter-
active and immersive experiences in our daily spaces.

In this paper, we study a problem of egocentric 3D
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scene understanding—predicting depths and surface nor-
mals from a single view egocentric image. In addition
to challenges of classic scene understanding problems [6],
egocentric scene understanding poses two more challenges:
(1) Images are no longer upright. Head movements induce
significant roll and pitch motions where the scene is often
depicted in a tilted way. In particular, by the nature of hand-
eye coordination, egocentric images inherently are affected
by severe pitch motion when manipulating objects, which
is substantially different from the existing data distribution,
e.g., ScanNet [6], NYUv2 [37], and KITTI [19]. (2) Im-
ages include not only background objects, e.g., furniture,
room layout, and walls, but also dynamic foreground ob-
jects, e.g., humans and arms/hands (see Figure 1). Classic
scene understanding mainly focuses on reconstructing the
overall geometric layout made of such background objects
while the foreground ones are considered as outliers. In
contrast, these foregrounds are more salient in egocentric
scenes as they are highly indicative of evolving activities.

We conjecture that the challenges of egocentric scene
understanding can be addressed by an image stabilization
method that incorporates the fundamentals of equivariance,
called spatial rectifier [8]—an image warping that trans-
forms a titled image to a canonical orientation (i.e., gravity-
aligned) such that a prediction model can learn from the
upright images. This is analogous to our robust perception
through mental stabilization of visual stimuli [56]. How-
ever, the spatial rectifier shows inferior performance on pre-
dicting 3D geometry of egocentric images that involve sub-
stantial head movement (e.g., nearly 90 degree pitch), lead-
ing to excessive perspective warps. We present a multi-
modal spatial rectifier by generalizing the canonical direc-
tion, i.e., instead of unimodal gravity-aligned direction, we
learn multiple reference directions from the orientations of
the egocentric images, which allows minimizing the impact
of excessive perspective warping. Our multimodal spatial
rectifier makes use the clusters of egocentric images based
on the distribution of surface normals into multiple pitch
modes, where we learn a geometric predictor (surface nor-
mals or depths) that is specialized for each mode to rectify
associated roll angles.

To facilitate learning the visual representation of dy-
namic egocentric scenes, we present a new dataset called
EDINA (Egocentric Depth on everyday INdoor Activities).
Our dataset comprises 16 hours RGBD recording of indoor
activities including cleaning, cooking, eating, and shopping.
Our dataset provides a synchronized RGB, depth, surface
normal, and the 3D gravity direction to train our multimodal
spatial rectifier and geometry prediction models. Our depth
and surface normal predictors learned from the EDINA out-
perform the baseline predictors not only on EDINA dataset
but also other datasets, such as EPIC-KITCHENS [7] and
First Person Hand Action (FPHA) [18].

Our contributions include: (1) a multimodal spatial recti-
fier; (2) a large dataset of egocentric RGBD with the gravity
that is designed to study egocentric scene understanding, by
capturing diverse daily activities in the presence of dynamic
foreground objects; (3) comprehensive experiments to high-
light the effectiveness of our multimodal spatial rectifier and
our EDINA dataset towards depth and surface normal pre-
diction on egocentric scenes.

2. Related Works
Our egocentric scene understanding lies in the intersec-

tion between single view geometry and equivariant spatial
rectifier. We briefly review the related work.
Single View Depth and Surface Normal Single view
scene understanding approaches have shown great progress
by leveraging a large amount of data such as ScanNet [6]
that supervises to learn the mapping from an image to a
3D scene geometry such as depths [5, 9, 10, 14, 20, 22,
24, 25, 30, 31, 33, 41, 43–46, 59, 61, 62] or surface nor-
mals [1, 4, 8, 9, 23, 32, 41, 54, 55, 60]. Existing methods
that show remarkable performance on scene understand-
ing tasks have focused on either: (1) designing deep neu-
ral network architectures [8, 14, 24]; or (2) exploiting use-
ful 2D visual cues for learning 3D geometry, including tex-
tures [23], vanishing points [55], planar surfaces [33, 54],
and depth-surface normal consistency [41]. Nevertheless,
they are only enabled by large-scale indoor RGBD datasets,
such as ScanNet [6], NYUv2 [37], Sun3D [58], and Sun
RGBD [51]. However, due to the nature of data collection
methods, a model trained on such datasets show a notable
performance degradation when applying it to egocentric im-
ages because of two reasons: (1) The model has not exposed
to the tilted images that have substantially different visual
patterns from that of upright images. (2) The model has lim-
ited capability of learning dynamic foreground objects that
are abundant in egocentric scenes, e.g., hands, pots, pans,
vacuums, brooms, pets, and humans. To address these chal-
lenges in egocentric images, we make use of a multimodal
spatial rectifier, which allows using large existing datasets
in conjunction with egocentric datasets.
Rotation Equivariance Equivariance is a geometric prop-
erty of a visual representation: the visual representation in
an image must be transformed, according to the transforma-
tion of the scene. Enforcing equivariance in learning a scene
geometry allows geometrically coherent learned models. To
achieve this, camera poses [62] and gravity directions [8]
can be employed. For instance, equivariance is used to
learn the geometry of scenes by augmenting transforma-
tions, i.e., spatial rectifier [8] that rectifies a tilted image
to an upright (gravity-aligned) image [8, 49, 50]. Despite
the substantial improvement on the tilted images, the spatial
rectifier with a unimodal gravity-aligned direction shows
poor performance on egocentric images. It is mainly caused

2



 up
( )Φ x

x

( )h Φ x

Φ Φ

x

Figure 2. A spatial rectifier enforces equivariance property to learn
a geometrically coherent representation. When a point is trans-
formed by W , its feature is expected to transformed accordingly,
i.e., ΦpWxq “ hW ˝ Φpxq.

by excessive warping of egocentric images due to a large
variation of camera angle, e.g., nearly 90 degree pitch an-
gle when engaging eye-hand coordination. Our multimodal
spatial rectifier prevents such excessive perspective warp by
predicting multiple reference directions, which significantly
improves the egocentric scene understanding task.
Egocentric Scene Datasets Egocentric scene datasets have
been used for a wide range of tasks such as action
recognition [11, 12, 40], action anticipation [2, 47], and
many others [15–17]. Notably, Damen et al. [7] pro-
posed EPIC-KITCHENS, a large-scale egocentric bench-
mark with densely annotated actions and object inter-
actions in the kitchen environment. A few egocentric
RGBD datasets that exist were designed for activity recog-
nition [18, 36, 48, 53]. With a few exception, such datasets
do not include the 3D gravity direction that is critical for
learning an equivariant representation. Our EDINA dataset
provides synchronized RGBD and gravity directions cap-
tured from an egocentric viewpoint with diverse daily activ-
ities.

3. Method

We present a multimodal spatial rectifier that stabilizes
tilted images into multiple transformation modes. This
method minimizes the impact of perspective warping while
retaining equivariance property.

3.1. Equivariant Spatial Rectifier

Consider a function Φ : R2 ˆ I Ñ Rn that predicts
the geometry of a pixel x P R2 in an image I P I, where
I “ r0, 1s3ˆHˆW is the image range (H and W are its
height and width, respectively). We denote the prediction:

y “ Φpx, Iq, (1)

where y P Rn and n is the dimension of the geometry, e.g.,
n “ 1 for depth, and n “ 3 for surface normal.

A spatial rectifier [8] is learned to transform a tilted im-
age I with the gravity direction g P S2 in the camera co-
ordinate system to the upright image Iup with the upright

Figure 3. A unimodal spatial rectifier produces an excessive per-
spective warp (middle) to align the image to the gravity direction,
which significantly degrade the performance of geometry predic-
tion. We use a multimodal spatial rectifier that warps to multiple
reference directions that minimizes the impact of the perspective
warping (right).

gravity direction gup by explicitly enforcing an equivariant
property through 3D rotation (Figure 2):

hW ˝ Φpx, Iq “ ΦpWpx;Rupq, Iupq, (2)

where W : R2 ˆ SOp3q Ñ R2 is a 2D transformation that
maps a point in the tilted image to the upright image based
on the 3D gravity direction. That is, the transformation can
be determined by a homography induced by camera pure ro-
tation Rup P SOp3q such that gup “ Rupg. Iup is warped
from the tilted image by W , i.e., Iup “ IpWpx;Rupqq.
hW is the geometry transformation parametrized by W ,
e.g., (1) for the surface normal prediction, hW is equivalent
to rotating the surface normal vector (S2), i.e., hW ˝ Φ “

RupΦ; (2) for the depth prediction, hW is defined as:

hW ˝ Φ “
`

RupK
´1

rx
˘

z
Φ (3)

where pvqz denote the 3rd coordinate of a vector v P R3,
and K is the camera intrinsic matrix, and rx P P2 is the
homogeneous representation of x.

Predicting the geometry of a tilted image can be modeled
as a function composition:

Φpx, Iq “ h´1
W ˝ ΦuppWpx;Rupq, Iupq, (4)

where h´1
W is the spatial rectifier, and Φup is the geometry

predictor learned from upright images. A key benefit of this
function composition is that Φup can be trained solely by
the large training dataset made of the upright images (e.g.,
ScanNet [6] and NYUv2 [37]), which can be, in turn, used
to predict the surface normals of a tilted image.
Limitation Despite of its strong performance on tilted im-
ages, the spatial rectifier exhibits a major limitation towards
egocentric scene understanding due to its single modal rec-
tification. The spatial rectifier is designed to warp a tilted
image with respect to a single upright direction, which ap-
plies to roll and mild pitch camera rotations. In constrast,
egocentric images often have substantial head orientation
due to the hand-eye coordination, resulting in severe per-
spective warped image Iup (e.g., 90˝ pitch tilted image),
which in turns, significantly degrades the performance of
the geometry predictor as shown in Figure 3 (middle).
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Figure 4. Unlike the spatial rectifier [8] that relies on the unimodal surface normal distribution with respect to the gravity direction (left),
we present a multimodal spatial rectifier that generalizes the spatial rectifier by learning multiple reference directions (right). As a result,
the surface normal distribution of the scene datasets can be decomposed into multiple clusters, which allows minimizing the impact of
image warping and more importantly, learning a geometrically coherent representation.

3.2. Multimodal Spatial Rectifier

We generalize the spatial rectifier model by leveraging
a mixture of expert models [34] called multimodal spatial
rectifier where each expert model predicts the geometry cor-
responding to a spatial rectification mode:

Φpx, Iq “
1

ř

i bi

ÿ

i

bi
`

h´1
Wi

˝ ΦipWpx;Riq, Iiq
˘

, (5)

where bi P R` is a non-negative weight to mix transfor-
mations, and Ri is the rotation that transforms the grav-
ity of the tilted image to the ith reference direction, i.e.,
ri “ Rig. Ii is warped from the tilted image by Wi, i.e.,
Ii “ IpWpx;Riqq. The reference direction r P S2 is a gen-
eralization of the upright gravity gup, which specifies the
egocentric tilted images to be warped. Φi is the geometry
predictor designed for the ith reference direction. We de-
note Wpx;Riq by Wi by abuse of notation. The key benefit
of the multimodal spatial rectifier is the flexibility of image
warping. The severe head orientation of an egocentric im-
age can be warped to the closest reference direction, which
prevents excessive perspective warping (see Figure 3).

We find the set of reference directions triu
K
i“1 along the

pitch angles by clustering the gravity of egocentric images
with K is the predefined number of the reference directions:

minimize
triuKi“1

K
ÿ

i“1

ÿ

jPCi

}gj ´ ri}
2
2, (6)

where Ci is the set of the indices of training instances of
which gravity directions closest to the ith reference direc-
tion ri. In practice, we design an iterative algorithm in-
spired by K-Medoids algorithm [38] by increasing the num-
ber of cluster numbers K until the total deviation reaches

below a threshold δ indicating the data is well-fitted (see
Algorithm 1). Figure 4 illustrates gravity cluster centers
and images as well as their surface normal map belonging
to each cluster. Similar to spatial rectifier [8], we represent a
3D rotation by two unit vectors: (g, e) are gravity and prin-
ciple direction. e is the unit vector that is a mode of surface
normals distribution in an image (see details in Appendix).
In practice, we use one-hot encoding for tbiu, i.e., bi “ 1 if
ri is closest to g, and zero otherwise.

3.3. Learning Spatial Rectifier

We learn a spatial rectifier given a set of ground truth
directions tpI,g, e,yquD where D is the training dataset.
y P RnˆHˆW is the ground truth geometry (n “ 1 for
depth and n “ 3 for surface normal).

Consider two learnable functions fg, fe : I Ñ S2 that
predict the gravity and principle directions from an image,
respectively. These two functions constitute a spatial rec-
tifier that can be learned by minimizing the following loss:

LSRpI,g, eq “ cos´1pgTfgpIqq ` cos´1peTfepIqq, (7)

Algorithm 1: Determine reference directions
Input : δ, tgjuIjPDtrain

Output: {riuKi“1

K “ 1, t “ δ ` ϵ;
while t ą δ do

triu
K
i“1 = K-MedoidsptgjuDtrain ,Kq;

t “
řK

i“1

ř

jPCi
}gj ´ ri}

2
2;

K Ð K ` 1;
end
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Figure 5. The multimodal spatial rectifier warps an egocentric im-
age by predicting the gravity g and principle directions es, allow-
ing learning a coherent geometry predictor Φ.

We jointly learn the multimodal spatial rectifier together
with the geometry predictor by minimizing the following
loss:

L “
ÿ

tI,g,e,yuPD

LGEOpy, Iq ` λLSRpI,g, eq. (8)

The geometric loss LGEO measures the geometric error be-
tween the prediction and ground truth:

LGEOpy, Iq “
ÿ

x

dpyx,Φpx, Iqq, where

dpy,Φq “

#

|y ´ Φ| for depth
cos´1

`

yTΦ
˘

for surface normal

where Φpx, Iq “ h´1
W ˝ ΦpWpx;Rq, Iq, and R can be

computed by the predictions of fgpIq and fepIq.

3.4. Network Design

The multimodal spatial rectifier is a modular predictor
that can combine with a geometry predictor Φ as shown in
Figure 5. It is learned to predict the gravity and principle
directions from an input tilted image through fg and fe,
respectively. With the predicted direction, it computes the
rotation R that can be used to warp the image to the ref-
erence direction W . The geometry predictor takes as input
an image and predict depths and surface normals. These
predictions are unwarped by h´1

W .
Implementation Details Our networks take as input an
RGB image of size 320 ˆ 240 and output the same size
surface normals or depths. We use a ResNet-18 architec-
ture to estimate fg and fe while the geometry predictor Φ
is specified in 5.2. The proposed models are implemented
in PyTorch [39], trained with a batch size of 32 on a single
NVIDIA Tesla V100 GPU, and optimized by Adam [26]
optimizer with a learning rate of 10´4. We train our models
for 20 epochs.

4. EDINA Dataset
We present a new RGBD dataset called EDINA (Egocen-

tric Depth on everyday INdoor Activities) that facilitates
learning 3D geometry from egocentric images. Each in-
stance in the dataset is a triplet: RGB image (1920ˆ1080),
depths and surface normals (960ˆ540), and 3D gravity
direction. The data were collected using Azure Kinect

cameras [35] that provide RGBD images (depth range:
0.5„5.46m) with inertial signals (rotational velocity and
linear acceleration). Eighteen participants were asked to
perform diverse daily indoor activities, e.g., cleaning, sort-
ing, cooking, eating, doing laundry, training/playing with
pet, walking, shopping, vacuuming, making bed, exercis-
ing, throwing trash, watering plants, sweeping, wiping,
while wearing a head-mounted camera. The camera is ori-
ented to approximately 45˝ downward to ensure observing
hand-object interactions. Total number of data instances is
550K images (16 hrs). Figure 6(a) illustrates the represen-
tative examples of EDINA dataset that include substantially
tilted egocentric images depicting diverse activities.

The gravity direction is correlated with activities. For
instance, the majority of cooking and cleaning activities
are performed while facing down, whereas the shopping
and interacting with others are performed while facing
front as shown in Figure 6(b). Figure 6(c) illustrates the
amount of data of four major indoor activities of clean-
ing, cooking, shopping, and home organizing. Unlike ex-
isting scene datasets such as ScanNet, a large proportion of
pixels of egocentric scenes belong to the foreground. Our
dataset is available at https://github.com/tien-
d/EgoDepthNormal.

5. Experiments
We evaluate our two main contributions: accuracy of

multimodal spatial rectifier and effectiveness on multiple
datasets including EDINA.

5.1. Evaluation Datasets

HM3D [42] To facilitate more controlled experiments, we
use HM3D, a large-scale dataset containing 1,000 distinc-
tive building-scale, real-world 3D reconstructions. The data
are composed of textured 3D mesh reconstruction with high
visual fidelity, which allows us to render the photo-realistic
scenes from diverse viewpoints with known camera orien-
tations. We render the RGB-D frames from each viewpoint
and only retain the views that are complete (no missing sur-
faces or reconstruction artifacts). ScanNet [6] ScanNet is
a large RGB-D indoor datasets with 1500 sequences, span-
ning a wide variety of scenes. We use the standard dataset
split used in FrameNet [23] that comprises 199,720 frames
for training and 64,319 frames for validating. In addi-
tion, we utilize FrameNet’s high-quality ground-truth sur-
face normals to augment with our EDINA for training.

Evaluation Metrics We assess the accuracy of the pre-
dicted depths using multiple standard metrics, including:
(a) mean absolute relative error (Abs. Rel), (b) mean square
relative error (Sq. Rel), (c) logarithmic root mean square
error (log-RMSE), (f) root mean square error (RMSE), and
(g) the percentage of the estimated depths d̂ for which
maxp d̂

d˚ ,
d˚

d̂
q ă δ, where d˚ is the ground-truth depth and
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(a) EDINA image, depth, surface normal, and gravity direction

(b) Gravity distribution
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Figure 6. We present EDINA (Egocentric Depth on everyday INdoor Activities) dataset. (a) We show egocentric images of diverse activities
with depths, surface normals, and gravity direction (black). (b) Gravity direction is highly correlated with egocentric activities. The images
of cooking and cleaning activities have nearly 90˝ pitch angle, which is different from shopping activities. (c) EDINA includes four major
indoor activities of cleaning, cooking, shopping, and home organizing. Unlike existing scene datasets such as ScanNet, a large proportion
of pixels of egocentric scenes belong to the foreground.

δ “ 1.25, 1.252, 1.253. In terms of surface normal error
metrics, we also employ standard metrics originally used
in [1, 13]: (a) mean absolute of the error (Mean), (b) me-
dian of absolute error (Median), (c) root mean square er-
ror (RMSE), and (d) the percentage of pixels with angular
error below a threshold ξ with ξ “ 5˝, 7.5˝, 11.25˝. ED-
INA (ours) We use EDINA dataset to train and evaluate
our models on surface normal and depth estimation. With
a total of 550K RGB-D images and IMU measurements,
we include 500K images collected by 15 participants in the
training set and use the remaining 50K images collected by
the rest of the three participants as the testing set. We also
follow the approach of [29] to generate ground truth sur-
face normals from the depth images. FPHA [18] We use

FPHA that is an egocentric RGB-D dataset consisting of
1,175 video sequences in several different hand-action cat-
egories for a total of 105,459 RGB-D frames and follow its
official train/test split.

5.2. Baselines

We construct various baseline algorithms using the state-
of-the-art scene understanding approaches. (1) PFPN:
Panoptic FPN [27] is a lightweight network architec-
ture which has been used in various high-resolution pre-
diction tasks. We employ PFPN with the ResNet-
101 [21] backbone as our baseline network architec-
ture for both depth and surface normal estimation tasks.
(2) PFPN+SR(e2): we train PFPN using the spatial rec-
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Testing Method Abs. RelÓ Sq. RelÓ log-RMSEÓ RMSE Ó 1.25Ò 1.252 Ò 1.253 Ò

MiDaS (MIX6): 0.194 0.079 0.267 0.247 68.20 83.96 93.14
DPT (MIX6): 0.195 0.073 0.256 0.234 66.95 86.07 94.39
PFPN (ScanNet) 0.536 0.292 0.450 0.410 28.50 63.31 84.60

EDINA PFPN (EDINA) 0.173 0.052 0.210 0.181 78.81 92.97 97.06
PFPN 0.161 0.044 0.197 0.168 81.03 94.16 97.68
PFPN+MSR (Ours) 0.145 (-9.7%) 0.041 (-8.5%) 0.182 (-7.7%) 0.155 (-7.9%) 84.06 94.54 97.87
PFPN (ScanNet) 1.252 0.893 0.788 0.580 10.36 28.07 48.87

FPHA PFPN (EDINA) 1.229 4.114 0.802 1.483 25.98 46.38 62.70
PFPN 0.737 0.457 0.549 0.397 32.60 57.61 75.14
PFPN+MSR (Ours) 0.657 (-10.8%) 0.369 (-19.2%) 0.508 (-7.3%) 0.337 (-15.2%) 37.70 62.50 78.30

Table 1. We compare the performance of depth prediction of our method (MSR) with baselines on EDINA and FPHA testing data. The
: indicates methods that predict scale-ambiguous depth and thus require a scale correction step. The numbers in the parenthesis show the
percentage of the reduction in error metrics of PFPN+MSR (Ours) with respect to the baseline PFPN, where the green highlight denote
this improvement in percentage.

Figure 7. Performance of PFPN, PFPN+SR(e2), and PFPN+MSR
on HM3D test set. The dark and light color indicates the in- (at 0˝

and 40˝) and out-of-distribution (at 10˝, 20˝, 30˝), respectively.

tifier [8] (SR) with a unimodal reference direction e2 “
“

0 1 0
‰T

. (3) PFPN+SR(e3): we train PFPN using the SR

with a unimodal reference direction e3 “
“

0 0 1
‰T

. (4)
PFPN+MSR: we train PFPN with our multimodal spatial
rectifer (MSR) described in Section 3.2. (5-8) DORN:
DORN [14] is a high-capacity network architecture that
is recently utilized in state-of-the-art surface normal esti-
mation methods [8, 23]. Similar to PFPN, we also train
DORN with the unimodal spatial rectifier on two refer-
ence directions e2, e3 and with our multimodal spatial
rectifier, denoted by DORN+SR(e2), DORN+SR(e3), and
DORN+MSR, respectively. (9) MiDaS [45], (10) DPT [44]:
state-of-the-art depth prediction model trained on a large
scale dataset MIX6 [44]. Since the depth prediction from
MiDaS and DPT is ambiguous up to a scale factor, we scale
the predicted depth maps with a common factor computed
from the least-squares method [3,57] using the ground truth
depth on the train set. We denote a network trained on a
dataset by METHOD (DATASET), e.g., PFPN (EDINA) is
the PFPN network that is trained on EDINA dataset. By

default, all networks are trained on ScanNet+EDINA.

5.3. Performance Benchmark

Depth Prediction We first show the effectiveness of our
MSR through a controlled experiment using the HM3D
dataset. Specifically, we render from HM3D a training set
containing 82,941 RGB-D frames respectively at upright
(tilt 0˝) and tilt 40˝ orientation and a testing set containing
3,944 RGB-D frames respectively at upright and tilt angles
at 10˝, 20˝, 30˝, and 40˝. The tilted images are rendered
with the rotation around e3 axis with respect to the upright
orientation (roll). Figure 7 illustrates the performance be-
tween PFPN, PFPN+SR(e2), and PFPN+MSR (at two dis-
tribution modes 0˝ and 40˝) in 2 cases: (i) in-distribution:
0˝ and 40˝, and (ii) out-of-distribution: 10˝, 20˝, and 30˝.
We can observe that for the in-distribution case, the base-
line and MSR performs similarly while the PFPN+SR(e2)
slightly underperforms the former ones due to its excessive
warping. On the other hand, for the out-of-distribution case,
while the baseline method degenerates at 10˝, 20˝, and 30˝,
both SR and MSR generalize reasonably well with the SR
slightly degenerates when the tilt angle is further from its
central mode (upright).

Table 3 demonstrates the performance of our multi-
modal spatial rectifier and the effectiveness of our EDINA
dataset. A baseline network equipped with our spatial recti-
fier (PFPN+MSR) outperforms other baselines on all eval-
uation metrics, not only on our EDINA dataset but also on
FPHA dataset. While the performance margin for the net-
work equipped with and without MSR is narrow on EDINA,
it is significant when generalizing to FPHA. We conjecture
that EDINA dataset that comprises a large variation in pitch
angles can be overfitted by a large capacity network such as
PFPN. In contrast, FPHA dataset is taken from a shoulder-
mounted camera, imposing more roll motion on the im-
age, thus it causes a strong degradation for PFPN trained
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Figure 8. Qualitative results for EPIC-KITCHENS (Left), FPHA (top right), and EDINA (bottom right). For EPIC-KITCHENS and
FPHA, from left to right: (1) RGB image, (2) depths and surface normals using PFPN trained on ScanNet and Edina, and (3) depths and
surface normals using PFPN+MSR trained on ScanNet and Edina. For EDINA, from left to right: (1) RGB image, (2) ground truth depths,
(3) estimated depths (w/o and w/ MSR), (4) the corresponding depth error (w/o and w/ MSR).

on ScanNet+EDINA datasets. We conclude that our MSR
module is highly beneficial for learning egocentric scene
geometry. Figure 8 illustrates the qualitative results of our
method on EPIC-KITCHENS and FPHA. More qualitative
results can be found in Supplementary Materials.

In addition, baselines that do not employ egocentric data,
i.e., MiDaS (MIX6), DPT (MIX6), PFPN (ScanNet), per-
forms poorly on both EDINA and FPHA. On the other hand,
the network trained only on EDINA performs strongly on
its own test set while lacking generalizability towards to
other dataset such as FPHA. This indicates that learning can
greatly benefit from a large amount of high quality ground
truth geometry from ScanNet, together with our EDINA.

Surface Normal Prediction In Table 2, we compare our
method with the baselines on EDINA dataset and demon-
strate the effectiveness of our proposed multimodal spatial
rectifier on surface normal prediction. On median and tight
thresholds (ξ “ 5˝, 7.5˝), the unimodal spatial rectifier with
e2 as the reference direction (PFPN+SR (e2)) shows no-
table improvements compared to the baseline PFPN while
inferior in terms of RMSE and mean. Moreover, this is-
sue further escalates when e3 is used as the only reference
direction (PFPN+SR (e3)). This is mainly caused by the ex-
cessive warping that is very common on egocentric data. In
contrast, by predicting the multiple reference directions, our
PFPN+MSR can generalize to diverse viewpoints, thus out-
performs other baselines on all metrics. Note that this also
applies for DORN+MSR, suggesting that it is highly flex-
ible and can be easily integrated into other networks. See
Figure 13 for qualitative results.

Method MeanÓ MedianÓ RMSEÓ 5˝Ò 7.5˝Ò 11.25˝Ò

PFPN 20.24 13.61 27.51 15.46 26.93 42.63
PFPN+SR (e2) 20.27 13.41 28.47 25.10 34.00 44.81
PFPN+SR (e3) 39.20 31.19 50.63 16.29 23.47 30.06
PFPN+MSR 19.30 12.54 27.37 26.00 35.49 46.74
DORN 19.57 12.92 27.07 17.42 29.01 44.66
DORN+SR (e2) 19.96 12.68 28.46 25.53 35.00 46.35
DORN+SR (e3) 21.99 14.83 30.46 21.33 29.83 40.87
DORN+MSR 18.56 11.55 26.83 26.58 37.04 49.18

Table 2. We compare the performance of surface normal predic-
tion of our method (MSR) with baselines including the unimodal
spatial rectifier (SR) on EDINA testing data.

6. Summary
In this paper, we present a new multimodal spatial rec-

tifier for egocentric scene understanding, i.e., predicting
depths and surface normals from a single view egocentric
image. The multimodal spatial rectifier identifies multiple
reference directions to learn a geometrically coherent rep-
resentation from tilted egocentric images. This rectifier en-
ables warping the image to the closest mode such that the
geometry predictor in this mode can accurately estimate the
geometry of the rectified scene. To facilitate the learning of
our multimodal spatial rectifier, we introduce a new dataset
called EDINA that comprises 550K synchronized RGBD
and gravity data of diverse indoor activities. We show that
EDINA is complementary to ScanNet, allowing us to learn a
strong multimodal spatial rectifier. We evaluate our method
on egocentric datasets including our EDINA, FPHA and
EPIC-KITCHENS, which outperforms the baselines.
Acknowledgements This work is partially supported by
NSF CAREER IIS-1846031.
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Testing Method Abs. RelÓ Sq. RelÓ log-RMSEÓ RMSE Ó 1.25Ò 1.252 Ò 1.253 Ò

PFPN (THU-READ) 0.405 0.210 1.044 0.431 28.71 45.72 61.97
PFPN (FPHA) 0.314 0.167 0.500 0.378 42.82 66.48 78.98
PFPN (ScanNet) 0.536 0.292 0.450 0.410 28.50 63.31 84.60
MiDaS (MIX6): 0.194 0.079 0.267 0.247 68.20 83.96 93.14
DPT (MIX6): 0.195 0.073 0.256 0.234 66.95 86.07 94.39
PFPN (EDINA) 0.173 0.052 0.210 0.181 78.81 92.97 97.06

EDINA PFPN 0.161 0.044 0.197 0.168 81.03 94.16 97.68
PFPN+SR(e2) 1.573 3.145 0.938 1.155 5.58 19.75 42.32
PFPN+SR(e3) 0.381 0.333 0.475 0.416 51.75 73.37 84.62
PFPN+MSR (Ours) 0.145 (-9.7%) 0.041 (-8.5%) 0.182 (-7.7%) 0.155 (-7.9%) 84.06 94.54 97.87
PFPN (THU-READ) 0.439 0.150 4.629 0.279 32.03 54.92 70.76
PFPN (ScanNet) 1.252 0.893 0.788 0.580 10.36 28.07 48.87
PFPN (EDINA) 1.229 4.114 0.802 1.483 25.98 46.38 62.70

FPHA PFPN 0.737 0.457 0.549 0.397 32.60 57.61 75.14
PFPN+MSR (Ours) 0.657 (-10.8%) 0.369 (-19.2%) 0.508 (-7.3%) 0.337 (-15.2%) 37.70 62.50 78.30
PFPN (FPHA) 0.119 0.023 0.139 0.075 91.29 97.31 98.75

Table 3. We compare the performance of depth prediction of our method (MSR) with baselines on EDINA and FPHA testing data. The
: indicates methods that predict scale-ambiguous depth and thus require a scale correction step. The numbers in the parenthesis show the
percentage of the reduction in error metrics of PFPN+MSR (Ours) with respect to the baseline PFPN, where the green highlight denote
this improvement in percentage.

A. Computing Principle Direction e

We describe the procedure to compute the principle
direction e that are used in Equation (7) in the main
manuscript. For the jth image, we find the weight bji us-
ing the hard assignment by restricting bji “ t0, 1u where
bji is one if ri is closest to g, and zero otherwise. After
specifying a cluster of egocentric images based on the ref-
erence direction, we find the surface normal distribution per
cluster:

Qi “
1

|Ci|
ÿ

jPCi

histpnjq, (9)

where histpnjq is the angular histogram of the surface nor-
mals of the jth training image. nj is the 3 ˆ n matrix that
each column presents a pixel’s surface normal direction and
n is the total pixel in image Ij . The optimal rotation for
the jth image towards the ith reference direction, R˚

ji, is
the one that maximizes the similarity in the surface normal
distributions:

R˚
ji “ argmin

Rji

DKL phistpRjinjq||Qiq , (10)

where Rjinj is the rotated surface normals, and DKL is
KL divergence [28]. We optimize Equation (10) with an
initial guess of Rji computed by the gravity and reference
directions:

Rji “ I3 ` 2rig
T
j ´

pri ` gjq pri ` gjq
T

1 ` rTi gj
, (11)

Figure 9. EDINA dataset recording setup.

where I3 is the 3 ˆ 3 identity matrix.
This optimal rotation can be parametrized by the princi-

ple direction ej [8], where e can be computed by:

ej “ R˚
jigj . (12)

We use the optimal principle direction as a ground truth to
learn the multimodal spatial rectifier.

B. Hardware setup
The participants were asked to wear an Azure-Kinect-

mounted helmet while performing diverse daily indoor ac-
tivities. The sensor was also connected to a laptop which
reads and stores the raw data from the Azure Kinect device
using the provided SDK. Figure 9 demonstrates the mount-
ing configuration in which the camera is oriented to approx-
imately 45˝ downward so that the captured interactions are
within the field-of-view of the camera.

9



C. More Results
Baselines In addition to the datasets mentioned in the
main manuscript, we also perform experiments on THU-
READ [52]. THU-READ is an egocentric RGB-D dataset
consisting of 1,920 video sequences in several differ-
ent hand-action categories for a total of 171,474 RGB-D
frames. We follow THU-READ’s official 3/1 split for train-
ing/testing.
Evaluation Metrics We assess the accuracy of the pre-
dicted depths using multiple standard metrics, including:
(a) mean absolute relative error (Abs. Rel), (b) mean square
relative error (Sq. Rel), (c) logarithmic root mean square
error (log-RMSE), (f) root mean square error (RMSE), and
(g) the percentage of the estimated depths d̂ for which
maxp d̂

d˚ ,
d˚

d̂
q ă δ, where d˚ is the ground-truth depth and

δ “ 1.25, 1.252, 1.253.

Figure 10. PFPN+SR(e2) error map w.r.t. different roll and pitch
angles (on a subset of test images).
Depth Prediction Table 3 summarizes the performance of
our multimodal spatial rectifier and the effectiveness of our
EDINA dataset. A baseline network with our multimodal
spatial rectifier (PFPN+MSR) outperforms other baselines
on nearly all evaluation metrics, not only on our EDINA
dataset but also on FPHA dataset. We conjecture that ED-
INA dataset that comprises a large variation in pitch an-
gles can be overfitted by a large capacity network such as
PFPN. In addition, due to this substantial roll and pitch an-
gles, it results in significant performance degradation for
SR(e2) or SR(e3) (which motivates our multimodal spatial
rectifier). This is also shown in the performance SR(e2)
on depth RMSE with respect to camera roll and pitch an-
gle in Figure 10. Furthermore, the FPHA dataset is taken
from a shoulder mounted camera, imposing more roll mo-
tion on the image, thus it causes a strong degradation for
PFPN trained on ScanNet+EDINA datasets. We conclude
that our MSR module is highly beneficial for learning ego-
centric scene geometry.

A baseline PFPN trained on THU-READ, FPHA, and
ScanNet performs poorly on EDINA. In addition, the base-
line PFPN trained on THU-READ tends to generalize rel-
atively well on FPHA because both datasets include hand-
object interactions. On the other hand, the network trained
only on EDINA performs strongly on its own test set while
lacking generalizability towards to other dataset such as

FPHA. Our baseline PFPN trained on ScanNet and ED-
INA outperforms PFPN trained on other datasets on FPHA.
This indicates that learning can greatly benefit from a large
amount of high quality ground truth geometry from Scan-
Net, together with our EDINA.
Comparison of the clustered reference distributions of
different datasets. We show in Figure 11 the comparison
between ScanNet+EDINA and FPHA surface normal dis-
tribution. Note that FPHA has stronger distribution on the
tilted modes due to the shoulder mounted camera, which
shows the strong generalization capacity of our proposed
MSR.

Figure 11. ScanNet+EDINA vs FPHA surface normal distribution.

Qualitative Comparison We show the qualitative compar-
ison on depths and surface normals estimation with and
without the multimodal spatial rectifier on Figure 12 and
Figure 13, respectively.
Qualitative Results on EPIC-KITCHENS Figure 14 il-
lustrates the depths, surface normals and gravity prediction
on the EPIC-KITCHENS dataset using our multimodal spa-
tial rectifier trained on the ScanNet and our EDINA dataset.
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Figure 12. Qualitative results for depth prediction on EDINA dataset. From left to right: (1) RGB image, (2) ground truth depths, (3) depths
prediction using PFPN+MSR and its error (the hotter the higher error), and (4) depths prediction using PFPN and its error.
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Figure 13. Qualitative results for surface normal prediction on EDINA dataset. From left to right: (1) RGB image, (2) ground truth surface
normals, (3) surface normals prediction using PFPN+MSR and its error (the hotter the higher error), and (4) surface normals prediction
using PFPN and its error.
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Figure 14. Qualitative results for depth, surface normal, and gravity prediction on EPIC-KITCHENS dataset. In each column, from
left to right: (1) RGB image, (2) depth prediction using PFPN+MSR, (3) surface normals prediction using PFPN+MSR, and (4) gravity
prediction.
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